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Abstract

We develop a coarse-grained model to investigate the influence of nanoscale particles on the phase separation and the morphology of
symmetric AB diblock copolymer melts. The microphase separation is modeled by the cell dynamical systems (CDS) equations, while the
particle dynamics is described by a Langevin equation. We assume that the particles have a selective affinity to the A block and thus, can self-
assemble and form clusters within A-domains. By varying the particle volume fraction, ¢, we study the coupling between the microphase
separation of the diblocks and the cluster formation for the particles. We also estimate the percolation threshold, ¢ *, for the particles and find
that the presence of diblocks decreases ¢ by a factor slightly greater than two relative to the case of particles in a homopolymer (¢* = 9% in
a diblock vs. 22% in a homopolymer). This result can be useful in designing new composites with increased electrical conductivity and/or
mechanical strength. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The majority of high-performance polymers involve a
blend of macromolecules and solid ‘filler’ particles, which
serve to improve the properties of the polymeric matrix.
Recently, there has been significant interest in the develop-
ment of composites where the polymeric matrix is composed
of block copolymers. For example, a composite consisting of a
diblock polyelectrolyte and carbon black nanoparticles was
shown to exhibit improved electric conductivity and mechan-
ical stability, making it an optimal material for solid-state
rechargeable batteries [1]. As another example, a mixture of
diblock copolymers with clay nanoparticles yielded new poly-
mer/clay nanocomposites with increased mechanical strength
and toughness; in particular, adding only 5 wt% of clay to the
copolymer increased the tensile modulus 1.4 times [2]. Block
copolymers were also used as ‘templates’ to control the
deposition of metal particles onto thin films [3—5]. Such
diblock/particle mixtures are now being synthesized for the
use in photonic band gap devices [6].

While there have been a number of experimental studies
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on fabricating diblock/particle composites [3—9], there have
been few theoretical investigations into the factors that
control the thermodynamic and kinetic behavior of these
systems. Recently, however, several numerical methods
were used to allow researchers to study the morphology
and properties of such systems. Among these methods are
the lattice Monte-Carlo technique [10], dynamical density
functional theory [11], and a hybrid cell dynamical system
method [12,13]. These approaches made it possible to study
the interplay between the diblock microphase separation
and the self-assembly and clustering of the nanoparticles.

In our recent studies [10,13], we concentrated on the
behavior of AB-diblock copolymers mixed with spherical
nanoparticles (P). The particles had a strong preferential
affinity toward the A-block. This preferential interaction
can be achieved, for example, by grafting short A-chains
on the surface of each particle. We calculated the phase
diagram for this system in the strong segregation limit
[10] and found that when the particle size was slightly smal-
ler than the radius of gyration of the A-block, the particles
could self-assemble into ‘nanowires’ or ‘nanosheets’ within
the A-phase. These calculations were qualitatively
confirmed by Monte-Carlo simulations [10] and by two-
dimensional hybrid dynamic simulations [13].

In this paper, we expand the hybrid method of Ref. [13] to
three dimensions. The paper is structured as follows. In
Section 2, we derive our equations of motion, describe the
numerical method and the systems to be studied. In Section
3, we discuss the simulation results. Finally, Section 4
contains conclusions and directions for future work.
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2. Model

We represent the polymer melt by a three-dimensional
square lattice, which is 64 X 64 X 64 sites in size and has
periodic boundary conditions in all three directions. On each
lattice site, we define the scalar order parameter ¥' = p, —
pr, Where p, and pg are the respective local densities of the
A and B components. Note that ¥ = 1 (—1) corresponds to
the equilibrium order parameter for the A-rich (B-rich)
phase. Into this system, we introduce spherical particles of
radius R = 1. The particles have an affinity for the A block.
This affinity is introduced via the boundary conditions on
the surface of each particle and a polymer—particle coupling
term in the free energy (as described below). Thus, the
particles can influence the morphology and size of the poly-
mer domains that are formed during the microphase separa-
tion, and the polymers can affect the spatial distribution of
the particles. Below, we describe the equations of motion
for both the polymeric and the particulate components.

The dynamics of microphase separation in a melt of
diblocks can be described through the following equation
[14-16]:
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The constant M is the mobility for the order parameter
field. The variable F' = 2f — 1 describes the asymmetry of
the diblock; for a symmetric diblock, f = 0.5, and F = 0.
The ¢ term is the noise field (which we set to zero in this
study), and the parameter I" determines the thickness of the
lamellar domains and is proportional to .42, where 4" is
the length of the block copolymer [14,15].

The free energy 7 is given by:
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Here, the local free energy term & is given by:
. D 2
T = | dr{ (W) + E(VW) , 3)
where the double well potential f; is selected to be,
1
f; = —A log(cosh(¥)) + 5 w2, )

The coupling term F, describes the interactions
between the particles and the polymer. To model this
term, we select the following expression:

F ol = CJ drd V(r = R)(W(r) — ¥, )

where ¥, =1 is the value of the order parameter at the
particle surface. The potential V(r) is assumed to be expo-
nential (although any other rapidly decaying function could
also be used)

V(r) = exp(— L). (6)

)

We set the ‘coupling range’ ry = 3, so the interaction is
short-ranged. (It only affects the nearest and next-nearest
neighbor sites for a given particle.)

The motion of the particles is described by the Langevin
equation:

. 0F
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where M, is the particle mobility, f; is the force acting on the
ith particle due to all the other particles, and n represents
a Gaussian white noise with (n;,(r, Nn;g(r', 1")) = G,8(r —
r)8(t — 1')8;8,p. In this study, we neglect interactions
between particles (i.e. f; = 0) and consider only the parti-
cles’ diffusive motion and their interaction with the
polymer.

A cell dynamical systems (CDS) method [15,17,18] is
used to update the value of W for the phase-separating
AB mixture. By employing CDS modeling (rather than a
conventional discretization of Eq. (1)), we can significantly
increase the computational speed of the simulation [19].

To simulate the particle dynamics, we discretize Eq. (7)
and only allow the particles to move between different
lattice sites. A ‘Kawasaki exchange’ mechanism is used
for each particle move. First, the order parameter values
from all the cells to be occupied by a particle in its ‘new’
position are moved to the ‘old’ position of the particle. Next,
the boundary and excluded volume conditions are imposed
for the order parameter at the new particle position. This
mechanism ensures the conservation of the order parameter.
Such dynamics may break down for high particle mobilities,
so we only consider the case where the diffusion constant is
relatively low (almost all particle ‘jumps’ are to neighboring
sites). The discretized equations of motion have the follow-
ing form:

W(r,t + 1) = F[W(r,n] = (FI¥(r, 0] — V(r,0)), ®)

(V) = A tanh(P),
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F[W(r,0] = f(¥Y(r,1) + Wpl + DW(r, ) — W(r,1)),
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where { * ) is the isotropic spatial average over the nearest-
neighbor and the next-nearest neighbor sites, and [ * ) —
*] can be thought of as a discrete generalization of the
Laplacian.

At the surface of each particle, the lattice boundary condi-
tions (specified order-parameter value and zero order-para-
meter flux) are imposed as: Y(r,t) = ¥, and 9,F(r,1) = 0,
if Ry < |r — Ri(t)] = Ry + a, where a is the lattice spacing
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Fig. 1. Morphologies of the diblock copolymer/particle mixtures at early (z = 1000 timesteps, a), intermediate (f = 10000 timesteps, b), and late
(t =100 000 timesteps, c) stages of microphase separation for the system with N = 200 particles (¢, = 0.062). The white areas correspond to the A-rich
regions, the dark areas correspond to the B-rich regions, and the black ellipses represent particles.

and 9, denotes the ‘lattice’ normal derivative. Here, we set
¥, =1 so that the particles are ‘coated’ by fluid A.? The
d,F = 0 condition ensures zero flux of ¥ into the particles
since F plays the role of a chemical potential.

We use the following values of parameters:
A=13,D=05 G, =0, G, =05 I'=0004° f=
0.5, and vary only the particle number, N. These parameters

% The effective volume of each particle, together with its boundary layer,
equals 81 lattice sites.

* This value of I' corresponds to effective chain length 4" = 100,
according to the following equation: I" = 12/(f(1 — f)ﬂ/'z) [14].

correspond to an intermediate-to-strong segregation regime
for the diblocks. In our previous two-dimensional studies,
we investigated the role of coupling interactions by varying
the coupling constant C. It was found [12,13] that for the
small values of C (‘weak coupling case’), the particle
motion was predominantly diffusive, and the particles
disturbed the lamellar ordering of the diblocks. For large
values of C (‘strong coupling case’), the particles self-
assembled into clusters inside the A-block. In the present
study, we concentrate on the strong coupling case, setting
C = 0.05. The case C = 0 is used as a benchmark to deter-
mine the particle behavior in the absence of the diblocks’
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influence (since the particle behavior is purely diffusive, the
particle cluster size distribution is independent of the
surrounding polymeric fluid).

3. Results and discussion

We consider the case of symmetric diblocks (f = 0.5)
and vary the number of particles N = 0, 100, 200, 300,
and 400 (which corresponds to changing the particle volume
fraction, ¢,, from O to 0.124). Starting from the initial
random configuration (with diblocks in the disordered
state), we let the system evolve and observe the process of
microphase separation. The evolution of the system with
N = 200 particles (¢, = 0.062) is shown in Fig. 1. The
particles diffuse into the A-rich domains and increase the
size of these regions compared to the case of pure diblock.
The system shows some elements of lamellar ordering on a
short scale; however, due to the small box size and periodic
boundary conditions, the lamellae are interconnected, and
the overall morphology is closer to a bicontinuous structure.

To characterize the dynamics of the microphase separa-
tion, we plot the characteristic lamellar thickness R, calcu-
lated using the Ohta—Jasnow—Kawasaki [20] equation:

14
R= ————, ©)
ne tn, +n,
where d = 3 is the system dimensionality, L is the system
size, and n,, ny,, n, are the numbers of ‘broken bonds’
counted in X, Y, or Z direction, respectively. The depen-
dence of R on ¢ is plotted in Fig. 2. We can see that the
particles swell the A-lamellae, so the characteristic size
increases with increasing N. This result is in agreement
with our earlier simulations for the two-dimensional case
in the strong-coupling limit. Note that the characteristic size
depends linearly on the number of particles, which is consis-
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Fig. 2. Characteristic domain size as a function of time.
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Fig. 3. Circularly-averaged particle pair correlation function g(R) for the
case C =0, N =400 (inset) and for the case C = 0.05, N = 200, 300,
and 400.

tent with previous simulations and experimental data (see
Ref. [13] for more details).

We now turn our attention to the behavior of the particles.
In Fig. 3, we show the pair correlation function at time ¢ =
100 000 timesteps for the systems with N = 200, 300, and
400 particles. It can clearly be seen that the correlation
functions for these three cases are almost identical. In addi-
tion to the strong peak at separation R = 6, there are two
smaller peaks at R = 11 and R = 16, dictated by the order-
ing of the diblock copolymer. These peaks are due to the
correlation between the particles in the adjacent A-lamellae.
When the interaction between the particles and the diblock
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Fig. 4. Fraction of particles that belong to the largest cluster, £, as a
function of the particle volume fraction, ¢,. The solid curve corresponds
to the case C = 0.05 (‘strong coupling’), the dashed curve corresponds to
the case C = 0 (‘no coupling’). The arrows indicate the estimated percola-
tion thresholds for both cases. The percolation threshold for the C = 0 case
is the same as in the absence of the diblocks.
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is turned off, both secondary peaks disappear, as one would
expect (see inset, calculated for N = 400, C = 0).

Although the pair correlation function for the particles is
relatively insensitive to their volume fraction, the global
arrangement of the particles depends on ¢, is a critical
way. We can characterize this arrangement qualitatively
by measuring 2, the fraction of particles that belong to
the largest cluster. When £ is close to 1, almost all the
particles belong to one cluster; when 2 is close to 0, the
particles form many small clusters. It can be seen (Fig. 4)
that the strong interaction of the particles with the diblocks
significantly increases 2 for a given particle volume frac-
tion &,,.

We can now estimate the percolation threshold, d);‘, for
our system. To do that, we examine the largest cluster for
each volume fraction and check whether it extends between
any two opposing edges of the simulation box. The esti-
mated percolation thresholds are shown in Fig. 4 with two
arrows (for the ‘no-coupling case’ C = 0 and the ‘strong-
coupling case’ C = 0.05). The C = 0 case is equivalent to
the absence of any polymer, since the motion of the particles
is governed purely by the random Brownian forces. In the
C = 0.05 case, on the other hand, particles are strongly
confined within the A-rich regions by the ‘coupling’ forces.
As a result, they have much smaller translational freedom,
and interact with each other more often. All this leads to a
significant decrease in the percolation threshold. While for
the C = 0 case we find q’):, = (.22 = 0.02, for the C = 0.05
case, the result is ¢; =~ 0.09 £ 0.02. Thus, by using
symmetric diblock copolymers instead of homopolymers,
one can reduce the percolation threshold for the fillers by
a factor of 2.

This result can be easily understood by using the ‘double
percolation’ model, first developed to describe the behavior
of carbon black particles in binary polymer blends [21-24].
According to this model, the filler particles can percolate
and form infinite conducting clusters if two conditions are
satisfied: (i) the (A + P) phase is continuous, and (ii) the
particles percolate within the (A + P) phase. These condi-
tions can be written as:

¢p + (1 — ¢,) = 0.5, (10

¢>
by T — )

where p. is the bulk percolation threshold for spherical parti-
cles. We estimated p, = 0.23 = 0.02.* By looking at
Egs. (10)—(11), one can clearly see that if the effective
(A + P) volume fraction is close to 0.5, the effective perco-
lation threshold decreases roughly two times compared to
the case of fillers in a homopolymer matrix. This result is

Pe> (11)

* The site percolation threshold for the simple cubic lattice is equal to
0.31 [24], which is somewhat higher than our estimate of 0.22 = 0.02; the
discrepancy may be due to the fact that our particles occupy more than one
lattice site.

consistent with our simulations (Fig. 4), in which the effec-
tive percolation threshold for the particles in the symmetric
AB-diblock was found to be 0.09 = 0.01.

We performed several simulations with various diblock
compositions (f = 0.4,0.6) and found that the percolation
threshold is relatively insensitive to the exact value of f as
long as it does not deviate too far from 0.5, and the overall
volume fraction of the (A + P)-phase is close to 0.5. Thus,
the effect of lowering the percolation threshold by using
diblock copolymers is expected to be relatively robust (as
long as the nanoparticles are smaller than the equilibrium
lamellar thickness for the A-block).

Finally, it is worth mentioning that the percolation thresh-
old can be decreased even further by changing the shape of
the fillers from spheres to rods. Our recent simulations of
rods in phase-separating binary blends [25] showed that the
percolation threshold is inversely proportional to the rod
length (or aspect ratio) and that the phase separation
between the two components, A and B, decreased the
value of the percolation threshold by a factor of 2 compared
to that of rods in a homopolymer matrix.

4. Conclusions

We performed three-dimensional dynamical simulations
of diblock copolymer/particle mixtures, using a hybrid
mesoscopic model that combines a CDS approach for the
diblocks with Langevin dynamics for the particles. The
particles had a strong preferential affinity toward one of
the blocks (A), and the diblocks were in the limit of inter-
mediate-to-strong segregation. The initial configuration was
a mixed (disordered) state, and the system evolved toward
microphase separated morphologies, with particles self-
assembling within the A-rich regions. To characterize the
dynamics of the process, we measured the effective domain
size as a function of time and the particle volume fraction.
As in our earlier, two-dimensional simulations [13], an
increase in the particle volume fraction led to the swelling
of the domains and the effective increase in the domain size.
This result, as we discussed earlier [13], is applicable for the
cases when the affinity of the particles toward one of the
phases is sufficiently strong compared to k7.

The simulation method also allowed us to describe the
self-assembly of particles into clusters. This process is espe-
cially important for the physical properties of the resulting
composite, such as electrical conductivity or mechanical
strength. We measured the size of the largest cluster for
several particle volume fractions and estimated the approx-
imate percolation threshold. Based on the simulations, we
concluded that the use of diblocks instead of homopolymers
could decrease the effective percolation threshold by
roughly a factor of two. This result was in a qualitative
agreement with the ‘double percolation’ model proposed
earlier for the behavior of particles in binary blends.
Furthermore, we suggested that percolation threshold
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could be decreased even further by using anisotropic
(rodlike) nanoparticles. The above results can be useful
in developing new conducting polymer/inorganic nano-
composites.
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